
CS267 L4 Shared Memory.1 Lucas Sp 2000

CS 267 Applications of Parallel Computers

Lecture 4:

More about
Shared Memory Processors

and Programming

Bob Lucas

based on notes by J. Demmel and D. Culler

http://www.nersc.gov/~dhbailey/cs267

CS267 L4 Shared Memory.2 Lucas Sp 2000

Recap of Last Lecture

° There are several standard programming models (plus
variations) that were developed to support particular kinds of
architectures

• shared memory

• message passing

• data parallel

° The programming models are no longer strictly tied to
particular architectures, and so offer portability of correctness

° Portability of performance still depends on tuning for each
architecture

° In each model, parallel programming has 4 phases
• decomposition into parallel tasks

• assignment of tasks to threads

• orchestration of communication and synchronization among threads

• mapping threads to processors

CS267 L4 Shared Memory.3 Lucas Sp 2000

Outline

° Performance modeling and tradeoffs

° Shared memory architectures

° Shared memory programming

CS267 L4 Shared Memory.4 Lucas Sp 2000

Cost Modeling
and

 Performance
Tradeoffs

CS267 L4 Shared Memory.5 Lucas Sp 2000

Example

° s = f(A[1]) + … + f(A[n])f(A[1]) + … + f(A[n])

°° DecompositionDecomposition
•• computing each f(A[j])computing each f(A[j])

•• n-fold parallelism, where n may be >> pn-fold parallelism, where n may be >> p

•• computing sum scomputing sum s

°° AssignmentAssignment
•• thread k sums thread k sums sksk = f(A[k*n/p]) + … + f(A[(k+1)*n/p-1]) = f(A[k*n/p]) + … + f(A[(k+1)*n/p-1])

•• thread 1 sums s = s1+ … +thread 1 sums s = s1+ … + sp sp

-- for simplicity of this example, will be improvedfor simplicity of this example, will be improved

•• thread 1 communicates s to other threadsthread 1 communicates s to other threads

°° OrchestrationOrchestration
• starting up threads

• communicating, synchronizing with thread 1

° Mapping
• processor j runs thread j

CS267 L4 Shared Memory.6 Lucas Sp 2000

Identifying enough Concurrency

° Amdahl’s law bounds speedup
• let s = the fraction of total work done sequentially

Simple Decomposition:
 f (A[i]) is the parallel task

 sum is sequential

C
on

cu
rr

en
cy

Time

1 x time(sum(n))

Speedup P
s

s

P
s

() ≤
+

− ≤
1
1

1

C
on

cu
rr

en
cy

p x n/p x time(f)
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Processors

S
P

ee
d

u
p

S=0%

S=1%

S=5%

S=10%

n x time(f)
° Parallelism profile

• area is total work done

After mapping

n

p

CS267 L4 Shared Memory.7 Lucas Sp 2000

Algorithmic Trade-offs

° Parallelize partial sum of the f’s
• what fraction of the computation is “sequential”

• what does this do for communication? locality?

• what if you sum what you “own”

C
on

cu
rr

en
cy

p x n/p x time(f)

p x time(sum(n/p))

1 x time(sum(p))

CS267 L4 Shared Memory.8 Lucas Sp 2000

Problem Size is Critical

° Total work= n + P

° Serial work: P

° Parallel work: n

° s = serial fraction

 = P/ (n+P)

° Speedup(P)=n/(n/P+P)

° Speedup decreases for

 large P if n small
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Processors
S

p
ee

d
u

p 1000

10000

1000000

Amdahl’s Law Bounds

In general seek to exploit a fraction of the peak parallelism
in the problem.

n

CS267 L4 Shared Memory.9 Lucas Sp 2000

Algorithmic Trade-offs

° Parallelize the final summation (tree sum)
• Generalize Amdahl’s law for arbitrary “ideal” parallelism profile

C
on

cu
rr

en
cy

p x n/p x time(f)

p x time(sum(n/p))

log_2 p x time(sum(2))

CS267 L4 Shared Memory.10 Lucas Sp 2000

Shared Memory Architectures

CS267 L4 Shared Memory.11 Lucas Sp 2000

Recap Basic Shared Memory Architecture

P1 P2 Pn

network

$ $ $

memory

° Processors all connected to a large shared memory

° Local caches for each processor

° Cost: much cheaper to cache than main memory

°° Simplest to program, but hard to build with many processors Simplest to program, but hard to build with many processors
°° Now take a closer look at structure, costs, limits Now take a closer look at structure, costs, limits

CS267 L4 Shared Memory.12 Lucas Sp 2000

Limits of using Bus as Network

I/O MEM MEM° ° °

PROC

 cache

PROC

 cache

° ° °

Assume 100 MB/s bus

50 MIPS processor w/o cache

=> 200 MB/s inst BW per processor

=> 60 MB/s data BW at 30% load-store

Suppose 98% inst hit rate and 95%
data hit rate (16 byte block)

=> 4 MB/s inst BW per processor

=> 12 MB/s data BW per processor

=> 16 MB/s combined BW

∴∴∴∴ 8 processors will saturate bus

Cache provides bandwidth filter
 – as well as reducing average access time

260 MB/s

16 MB/s

CS267 L4 Shared Memory.13 Lucas Sp 2000

Cache Coherence: The Semantic Problem

° p1 and p2 both have cached copies of x (as 0)

° p1 writes x=1 and then the flag, f=1, as a signal to other processors that it has
updated x

• writing f pulls it into p1’s cache

• both of these writes “write through” to memory

° p2 reads f (bringing it into p2’s cache) to see if it is 1, which it is

° p2 therefore reads x, expecting the value written by p1, but gets the “stale”
cached copy

x 1
f 1

x 0
f 1

x = 1
f = 1

p1 p2

°° SMPs SMPs have complicated caches to enforce coherence have complicated caches to enforce coherence

CS267 L4 Shared Memory.14 Lucas Sp 2000

Programming SMPs

° Coherent view of shared memory

° All addresses equidistant
• don’t worry about data partitioning

° Caches automatically replicate shared data close to processor

° If program concentrates on a block of the data set that no one
else updates => very fast

° Communication occurs only on cache misses
• cache misses are slow

° Processor cannot distinguish communication misses from
regular cache misses

° Cache block may introduce unnecessary communication
• two distinct variables in the same cache block

• false sharing

CS267 L4 Shared Memory.15 Lucas Sp 2000

Where are things going

° High-end
• collections of almost complete workstations/SMP on high-speed

network (Millennium)

• with specialized communication assist integrated with memory
system to provide global access to shared data

° Mid-end
• almost all servers are bus-based CC SMPs

• high-end servers are replacing the bus with a network

- Sun Enterprise 10000, Cray SV1, HP/Convex SPP

- SGI Origin 2000

• volume approach is Pentium pro quadpack + SCI ring

- Sequent, Data General

° Low-end
• SMP desktop is here

° Major change ahead
• SMP on a chip as a building block

CS267 L4 Shared Memory.16 Lucas Sp 2000

° Creating parallelism in shared memory models

° Synchronization

° Building shared data structures

° Performance programming (throughout)

Programming Shared Memory MachinesProgramming Shared Memory Machines

CS267 L4 Shared Memory.17 Lucas Sp 2000

Programming with Threads

° Several Threads Libraries

° PTHREADS is the Posix Standard
• Solaris threads are very similar

• Relatively low level

• Portable but possibly slow

° P4 (Parmacs) is a widely used portable package
• Higher level than Pthreads

• http://www.netlib.org/p4/index.html

° OpenMP is new standard
• Support for scientific programming on shared memory

• Currently Fortran, C, and C++ interfaces

• H/W vendors include SGI, SUN, Compaq, IBM, HP, and Intel

• http://www.openMP.org

CS267 L4 Shared Memory.18 Lucas Sp 2000

Creating Parallelism

CS267 L4 Shared Memory.19 Lucas Sp 2000

Language Notions of Thread Creation

° cobegin/coend

° fork/join

° cobegin cleaner, but fork is more general

cobegin

 job1(a1);

 job2(a2);

coend

•Statements in block may run in parallel

•cobegins may be nested

•Scoped, so you cannot have a missing coend

tid1 = fork(job1, a1);

job2(a2);

join tid1; •Forked function runs in parallel with current

•join waits for completion (may be in different function)

CS267 L4 Shared Memory.20 Lucas Sp 2000

Loop Level Constructs in OpenMP

CS267 L4 Shared Memory.21 Lucas Sp 2000

Forking Threads in Solaris

° start_fun defines the thread body

° start_fun takes one argument of type void* and returns void*

° an argument can be passed as arg
• j-th thread gets arg=j so it knows who it is

° stack_base and stack_size give the stack
• standard default values

° flags controls various attributes
• standard default values for now

° new_tid thread id (for thread creator to identify threads)
° http://www.sun.com/workshop/threads/doc/MultithreadedProgrammingGuide_Solaris24.pdf

int thr_create(void *stack_base, size_t stack_size,

 void *(* start_func)(void *),

 void *arg, long flags, thread_t *new_tid)

thr_create(NULL, NULL, start_func, arg, NULL, &tid)
Example:

Signature:

CS267 L4 Shared Memory.22 Lucas Sp 2000

Synchronization

CS267 L4 Shared Memory.23 Lucas Sp 2000

Barrier -- global synchronization
• fork multiple copies of the same function “work”

- SPMD “Single Program Multiple Data”

• simple use of barriers -- a threads hit the same one

• more complicated -- barriers on branches

• or in loops -- need equal number of barriers executed

• barriers are not provided in many thread libraries

- need to build them

Basic Types of Synchronization: Barrier

work_on_my_subgrid();

barrier;

read_neighboring_values();

barrier;

if (tid % 2 == 0) {

 work1();

 barrier

} else { barrier }

CS267 L4 Shared Memory.24 Lucas Sp 2000

Basic Types of Synchronization: Mutexes

Mutexes -- mutual exclusion aka locks
• threads are working mostly independently

• need to access common data structure

• Java and other languages have lexically scoped synchronization

- similar to cobegin/coend vs. fork and join

• Semaphores give guarantees on “fairness” in getting the lock, but
the same idea of mutual exclusion

• Locks only affect processors using them:

- pair-wise synchronization

lock *l = alloc_and_init(); /* shared */

acquire(l);

 access data

release(l);

CS267 L4 Shared Memory.25 Lucas Sp 2000

#define _REENTRANT
#include <synch.h>

/* Data Declarations */

typedef struct {
 int maxcnt; /* maximum number of runners */
 struct _sb {
 cond_t wait_cv; /* cv for waiters at barrier */
 mutex_t wait_lk; /* mutex for waiters at barrier */
 int runners; /* number of running threads */
 } sb[2];
 struct _sb *sbp; /* current sub-barrier */
} barrier_t;

int barrier_init(... int count, ...) {
……

bp->maxcnt = count;
……

}}

Barrier Implementation ExampleBarrier Implementation Example

CS267 L4 Shared Memory.26 Lucas Sp 2000

int barrier_wait(register barrier_t *bp) {
. . .
 mutex_lock(&sbp->wait_lk);

 if (sbp->runners == 1) { /* last thread to reach barrier */
 if (bp->maxcnt != 1) {
 /* reset runner count and switch sub-barriers */
 sbp->runners = bp->maxcnt;
 bp->sbp = (bp->sbp == &bp->sb[0])? &bp->sb[1] : &bp->sb[0];

 /* wake up the waiters */
 cond_broadcast(&sbp->wait_cv);
 }
 } else {
 sbp->runners--; /* one less runner */
 while (sbp->runners != bp->maxcnt)
 cond_wait(&sbp->wait_cv, &sbp->wait_lk);
 }
 mutex_unlock(&sbp->wait_lk);
}}

Barrier Implementation Example (Barrier Implementation Example (ContCont))

CS267 L4 Shared Memory.27 Lucas Sp 2000

Sharks and FishSharks and Fish

http://www.cs.berkeley.edu/~demmel/cs267/Sharks_and_Fish/

is missing … we’ll find it

CS267 L4 Shared Memory.28 Lucas Sp 2000

More Information on OpenMP

www.openmp.org

